ACULTY OF SCIENCES - DEPARTMENT OF MATHEMATICS COURSE SYLLABUS

MATH 110: General Mathematics (1)

COURSE TITLE	$\begin{aligned} & \text { ENGLISH } \\ & \text { CODE/NO } \end{aligned}$	$\begin{gathered} \text { ARABIC } \\ \text { CODE/NO. } \end{gathered}$	CREDITS			
			Th.	Pr.	Tr.	Total
General Mathematics (1)	MATH 110	$11 \cdot \jmath$	3			3
Pre-requisites:	None					
Course Role in Curriculum (Required/Elective):	Required Course					

Catalogue Description:
This course is a first Calculus dealing mainly with differential calculus. After a discussion of few mathematical preliminaries, we introduce functions and models, limits and derivatives, differentiation rules, and finally applications of differentiation.

Textbooks:

1. J. Stewart, Calculus, Early Transcendentals, Seventh Edition. International Metric Version, 2012.

Supplemental Materials:

Course Learning Outcomes:

$\underline{\text { By the completion of the course the student should be able to: }}$

1. Handle functions occurring in calculus and in the mathematical modeling of real-world problems;
2. Grasp the central idea of limit and continuity, and its application in a variety of problems;
3. Understand the main theme of calculus and its applications involving rates of change and the approximation of functions;
4. Differentiate standard functions by applying the fundamental rules of differentiation;
5. Compute the optimal values of functions and handle the optimization problems;
6. Apply the concepts of monotonicity and concavity in sketching the plane curves;
7. Deal with indeterminate forms and L'Hôpital's rule;
8. Understand the connection between derivatives and antiderivatives.
9. Handle functions occurring in calculus and in the mathematical modeling of real-world problems;

Topics to be Covered:

1. Mathematical Preliminaries
a. Numbers, Inequalities, and Absolute Values
b. Coordinate Geometry and Lines
c. Graphs of Second-Degree Equations
d. Trigonometry
2. Functions and Models
a. Four Ways to represent a Function
b. Mathematical Models
c. New Functions from Old Functions
d. Graphing Calculators and Computers
e. Exponential Functions
f. Inverse Functions and Logarithms
3. Limits and Derivatives
a. The Tangent and Velocity Problems
b. The Limit of a Function
c. Calculating Limits Using the Limit Laws
d. Continuity
e. Limits at Infinity; Horizontal Asymptotes
f. Derivatives and Rates of Change
g. The Derivative as a Function
4. Differentiation Rules
a. Derivatives of Polynomials and Exponential Functions
b. The Product and Quotient Rules
c. Derivatives of Trigonometric Functions
d. The Chain Rule
e. Implicit Differentiation
f. Derivatives of Logarithmic Functions
g. Rates of Change in the Sciences
h. Exponential Approximations and Differentials
i. Hyperbolic Functions
5. Applications of Differentiation
a. Maximum and Minimum Values
b. The Mean Value Theorem
c. How derivatives Affect the Shape of a Graph
d. Intermediate Forms and L'Hospital Rule
e. Summary of Curve Sketching
f. Graphing with Calculus and Calculators
g. Optimization Problems
h. Antiderivatives
