ACULTY OF SCIENCES - DEPARTMENT OF MATHEMATICS COURSE SYLLABUS

COURSE TITLE	ENGLISH	ARABIC	CREDITS		TS	
	CODE/NO	CODE/NO.	Th.	Pr.	Tr.	Total
General Mathematics (1)	MATH 110	ر ۱۱۰	3			3
Pre-requisites:	None					
Course Role in Curriculum	Required Course					
(Required/Elective):						

MATH 110: General Mathematics (1)

Catalogue Description:

This course is a first Calculus dealing mainly with differential calculus. After a discussion of few mathematical preliminaries, we introduce functions and models, limits and derivatives, differentiation rules, and finally applications of differentiation.

Textbooks:

1. J. Stewart, Calculus, Early Transcendentals, Seventh Edition. International Metric Version, 2012.

<u>Supplemental Materials:</u>

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Handle functions occurring in calculus and in the mathematical modeling of real-world problems;
- 2. Grasp the central idea of limit and continuity, and its application in a variety of problems;
- 3. Understand the main theme of calculus and its applications involving rates of change and the approximation of functions;
- 4. Differentiate standard functions by applying the fundamental rules of differentiation;
- 5. Compute the optimal values of functions and handle the optimization problems;
- 6. Apply the concepts of monotonicity and concavity in sketching the plane curves;
- 7. Deal with indeterminate forms and L'Hôpital's rule;
- 8. Understand the connection between derivatives and antiderivatives.
- 9. Handle functions occurring in calculus and in the mathematical modeling of real-world problems;

Topics to be Covered:

- 1. Mathematical Preliminaries
 - a. Numbers, Inequalities, and Absolute Values
 - b. Coordinate Geometry and Lines
 - c. Graphs of Second-Degree Equations
 - d. Trigonometry
- 2. Functions and Models
 - a. Four Ways to represent a Function

- b. Mathematical Models
- c. New Functions from Old Functions
- d. Graphing Calculators and Computers
- e. Exponential Functions
- f. Inverse Functions and Logarithms
- 3. Limits and Derivatives
 - a. The Tangent and Velocity Problems
 - b. The Limit of a Function
 - c. Calculating Limits Using the Limit Laws
 - d. Continuity
 - e. Limits at Infinity; Horizontal Asymptotes
 - f. Derivatives and Rates of Change
 - g. The Derivative as a Function
- 4. Differentiation Rules
 - a. Derivatives of Polynomials and Exponential Functions
 - b. The Product and Quotient Rules
 - c. Derivatives of Trigonometric Functions
 - d. The Chain Rule
 - e. Implicit Differentiation
 - f. Derivatives of Logarithmic Functions
 - g. Rates of Change in the Sciences
 - h. Exponential Approximations and Differentials
 - i. Hyperbolic Functions
- 5. Applications of Differentiation
 - a. Maximum and Minimum Values
 - b. The Mean Value Theorem
 - c. How derivatives Affect the Shape of a Graph
 - d. Intermediate Forms and L'Hospital Rule
 - e. Summary of Curve Sketching
 - f. Graphing with Calculus and Calculators
 - g. Optimization Problems
 - h. Antiderivatives